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Abstract

Secure and robust deep reinforcement learning (DRL) is
necessary to deploy DRL algorithms in real world appli-
cations. However, previous work shows that DRL policies
are vulnerable to adversarial attacks. In order to study the
vulnerability/robustness of DRL algorithms, previous work
has explored various attacks against DRL policies assuming
that the attacker has access to the original policy either in
a white-box manner or black-box manner. However, the re-
alizability of these attacks is limited as assuming access to
the original training environment or the policy could some-
times be impossible. In this study, we propose a set of novel
adversarial attack approaches against DRL policies based
on domain randomization, and we do not have the assump-
tion of access to the exact original training environment nor
the original policy, nor the possibility of querying the exact
original policy. We first systematically analyze the space
of transferable adversarial attacks against DRL when the
attacker has almost no knowledge about the original training
environment information such as system dynamics, action
space, reward function, and/or information about the trained
policy such as the algorithms and network structure. Then
we train an attacker on multiple different environments with
different dynamics, action space and reward settings, and
also with different RL algorithms. We separately evaluate
the effectiveness of the proposed attack when the environ-
ment changes or the algorithm used to train the pristine
model changes. We compare our method with traditional
adversarial attacks to show the improved transferability.

1. Introduction

Reinforcement learning (RL) is a powerful and increas-
ingly popular approach for solving sequential decision-
making problems such as computer-games [21, 14, 15] and
robot control [8, 10]. However, recent research indicates that

RL agents are vulnerable to adversarial attacks: small, tar-
geted perturbations to their inputs lead to poor performance
[11, 18, 7, 9, 25]. Previous adversarial attacks on deep RL
can usually be categorized to white-box and “black-box” ap-
proaches, which hold various assumptions about the victim
models. However, all of the methods under both settings
need to have at least partial knowledge of the target agent,
making the algorithms less realistic in the real-world appli-
cations. For instance, in white-box approaches, the attacker
often has access to the full model [7] to generate the adver-
sarial examples. In black-box approaches, the attacker needs
to either train an alternative victim model by imitating the
target model [25], know the target policy environments to
train a new policy [7], or generate perturbations using finite
difference by querying the model [25] at testing time.

We aim to find possible adversarial attacks that have more
realistic assumptions about the target model. Considering the
components of Markov decision processes (MDP): MDPs
are composed of the observation space, the action space, the
reward function, and the state transition function. Black-box
methods usually assume knowing full or partial informa-
tion about the victim policies’ training environment’s MDP
components. However, this assumption sometimes can be
infeasible. While in some cases, some information may be
available, we are interested in exploring whether it would
be possible to perform adversarial attack when the attacker
has much less information about the victim policies’ MDP
components and the victim policy.

In this work, we leverage domain randomization [22, 19],
a widely-used generalization improving approach, to gen-
erate adversarial attacks that can generalize and transfer.
Namely, we train attackers on multiple domains, and rely on
domain randomization to generalize the attack into new do-
mains. Transferable adversarial attacks on computer vision
models have been demonstrated before [12, 24, 16]. In this
work, we propose a neural network based “plug-and-play” at-
tack with more realistic assumptions about the victim model
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and can transfer when the attacker has limited knowledge.
We analyze the vulnerability of various aspects of the envi-
ronmental information (MDP’s components), and the extent
to which an agent can be successfully attacked when the
attacker lacks information about them.

Our main contributions are as follows: First, we identify
the problem of cross-domain transferable attacks in DRL,
especially in the cases where the attacker does not know the
original training environment’s action space, transition dy-
namics, reward functions, policy type and/or network struc-
ture; second, we propose to use domain randomization to
train adversarial attacks against multiple models with differ-
ent training environment settings and policy settings; third,
our trained attacker successfully attacks unseen policies, and
it improves the attack effects non-trivially over the attack
that does not use domain randomization.

2. Related Works

Adversarial Attacks on Deep RL. [7] and [9] showed
that DRL agents are vulnerable to adversarial attacks: mali-
ciously crafted small perturbation to observations with the
Fast-Gradient Sign Method (FGSM) [4]. [25] proposed a
network-based white-box approach to achieve a long-term
attack goal by training a neural network to produce pertur-
bations that minimize total returns instead of minimizing
the rewards at every time step. Other white-box attacks
target specific policies, such as [1], which exploits the Q-
values produced by Deep Q Network (DQN) [14] algorithms.
Black-box attacks on RL algorithms often take inspiration
from the method in [17]. That is, they train an example
agent on the target environment, and then rely on the ten-
dency of attacks to transfer, as in [2]. To attack DRL agents
without full knowledge of the target model, most black-box
attacks leverage the transferability of adversarial attacks [7].
Another, distinct approach used by [11] is building a video
prediction model and then selecting a series of actions to
minimize the expected return. More recently, [3] proposed
a new threat model in the multi-agent setting where the at-
tacker controls an agent that is visible to the victim policy
and acts to change the environment to attack, instead of di-
rectly perturbing the victim policy’s observations. [25] also
proposes a black-box approach based on finite difference to
estimate gradients at testing time to perform attack.

Transferable Adversarial Attacks on RL. [7] intro-
duced a black-box variant of the FGSM attack leveraging
similar techniques, while this attack requires access to the
training environment of the target model. [25] proposed
an imitation learning based attack which trains a surrogate
policy by only observing the target policy’s outputs. While
in the field of computer vision, domain shift mostly lies in
the image style [16], in RL and robotics control, dynamics,
actions, and rewards can be domain shift factors.

3. Preliminaries

Reinforcement Learning. We aim to propose adversar-
ial attacks for model-free RL in this work. We assume the
environment to be an MDP, consisting of its state space S,
action space A, reward function R, state transition function
T : S ⇥ A ⇥ S ! [0, 1], which maps action-conditioned
state transitions to their transition probability. The policy
is a function that maps states to actions: ⇡ : S ! A.
The goal is to find a policy that maximizes expected re-
turn ⇡⇤ = argmax⇡ E⇡[

P
i �

iri|⇡], where � is the reward
discount factor.

Attack Goal and Transferable Attacks on DRL. The
goal of the proposed adversarial attack is to reduce the final
total rewards of the target victim DRL agent. We assume
the attacker is able to perturb the observations of the target
model. We bound the amount of perturbation by its L-1
norm. That is for any given state s, the perturbed state is
constrained by ŝ 2 [s� ✏, s+ ✏]. In real world applications,
the attacker may have different levels of knowledge about
the target model. Since previous work has explored the trans-
ferability when there are domain shifts in images [16], we
explore other aspects where the attacker may have limited
knowledge about the target model. We propose the follow-
ing ways where the transferable attacks may exist: transfer
between different observation domains, (since this transfer
among the observation space has been explored by the previ-
ous work, we only listed here for the sake of completeness);
transfer between different action spaces; transfer between
different tasks or different reward functions; transfer be-
tween different environment transition dynamics; transfer
between different policy network structures.

4. Approach

In this work, we propose a neural network based end-to-
end adversarial attack with realistic assumptions of target
models in order to train an attack which can transfer to dif-
ferent domains and attack unknown target policies. Specifi-
cally, we explore the transferable attacks mentioned previ-
ously: transferable attacks against unknown action space,
reward function, transition dynamics, policy algorithm and
network structure of the target policy. To achieve these
goals, We train an attacker (a neural network) f that takes
the observation s as input and outputs a perturbation f(s, ✓),
where ✓ is the parameter of function f . The perturbation is
bounded by ✏ of its L-1 norm and added onto the original
state. Therefore, the perturbed state can be expressed as,
s̃ = f(s) = s+ ✏ ⇤ Tanh(✓(s)), where ✏ is the L-1 bound
for the perturbation, and Tanh(s) = es�e�s

es+e�s .
Target RL Algorithms. We attack target policies trained

with the following model-free RL algorithms: Deep De-
terministic Policy Gradient(DDPG) [10], continuous Deep
Q-learning with normalized advantage function (NAF) [5],



maximum entropy soft actor-critic (SAC) [6], and proximal
policy optimization (PPO) [20]. For the sake of simplicity,
we denote the general actor as A and critic as V , where
the actor is the policy that takes in the state and outputs the
action; and the critic takes in the state and outputs the value
of the state: V⇡(s) = E⇡[

P
i �

iri|s].
Training with Domain Randomization. We propose to

leverage domain randomization to improve the transferability
of the adversarial attacks against DRL. In this work, in order
to train an adversarial attacker that can perform successful
attacks even when it has limited knowledge about the target
model, we train multiple alternative victim policies that have
a relatively large variety of different environment settings or
training algorithm settings, and we train our attacker to attack
these alternative victim models then transfer the attacker to
the target model. The attacker is trained as an attack model
against several alternative victim policies randomized in
different aspects such as environment settings and training
approaches. We first identify the possible aspects that can
vary among potential alternative victim policies, then we
train multiple alternative victim policies under these settings.
Finally, we train our attacker on selected alternative victim
policies to help with transfer.

Training Alternative Victim Policies. In order to im-
prove the transferability of the attacker when it has limited
knowledge of the target policy, we train the following sets of
alternative victim policies: policies trained on environments
with different action spaces, reward functions, transition
dynamics. Additionally, policies trained on the same envi-
ronment with different algorithms. Finally, training the same
algorithm on the same environments but with different net-
work structures. When varying one aspect of the alternative
victim policy, other aspects stay the same.

Training the Attack Policies. The attacker should have
access to the alternative victim models and their training
environment, the policy algorithm and network structure.
The overall goal of the attacker is to minimize the re-
wards of all alternative victim policies. Define the set of
policies trained with a specific action space Ai, reward
function Ri, transition dynamics Ti, policy algorithm Pi

and network structure Si as: ⇡Ai,Ri,Ti,Pi,Si where i is the
index of the alternative victim policy. The goal of the
attacker f is to minimize the following expected return:
f⇤ = argminf Ef

P
i[E⇡Ai,Ri,Ti,Pi,Si (s=f(s))[

P
j �

jrj ]].

Per-Policy Attacks. During the training process, the
attack modifies the observed states of the target agents. We
define the attack network as f(✓) with parameter ✓, then the
perturbed state can be expressed as x̃ = f(x) = x + ✏ ⇤
Tanh(✓(x)), where ✏ is the L-1 bound for the perturbation,
and x is the original state and x̃ is the perturbed state. We
train attackers with different policies for each of the previous
three attack methods. The detailed algorithm is presented in
supplementary materials.

Figure 1. Results for comparing domain randomization trained at-
tack with other baselines. We randomize the dynamics, network
structure, action space, and reward space, respectively. In each
subfigure, the first row corresponds to the results for HalfChee-
tah, and the second row corresponds to the results for Walker2d.
These results are generated on attacker trained and tested with NAF
trained target policies. Correspondence: Non-randomized Attack:
wb-nn; non-randomized transfer attack: bb-transfer; randomized
transfer attack: bb-random (ours).

Baselines.We review previous important work on attack-
ing DRL and analyze their knowledge of the target policy.
First, white-box method based on FGSM [7] assumes that
they have access to the target model, while not necessarily
needing to know the original training environment informa-
tion. We refer to this method wb-fgsm. We also consider a
PGD-based attack [13] performed in the same way, which
we refer to as wb-pgd. Previous neural network based white-
box attacks [25] assume that they can perform gradients
updates through the target network to train the attacker net-
work, and require access to the original environment for
training the attacker. We train this attacker with all four
policy algorithms and the default environment setting, and
transfer the attack generated on this alternative model to the
target model (wb-nn). In addition, we train an attacker with
the same environment setting as the target model and with
the same policy type and network structure, and apply the
attack generated on the alternative victim model to the target
model. We call this method bb-transfer, and the domain-
randomized version of this approach bb-random. Note that
bb-random is our method.

5. Experimental Evaluation

We evaluate the proposed transfer attack on two RL en-
vironments: HalfCheetah and Walker2d on MuJoco [23].
We also conduct an ablation study to understand how ran-
domization in different domains affects the transferability of
the attack.

Task Variation. To train a transferable attack, we first
need to train multiple alternative victim policies with ran-
domization. We choose 5 different aspects for the random-
ization: dynamics, reward functions, action space, policy



Figure 2. Experiment results on HalfCheetah and Walker2d for
the overall attack that randomize everything. We then evaluate the
trained attacker on target models trained with NAF and DDPG, to
evaluate the cross dynamics, cross action space, cross reward func-
tions, cross network structure and cross algorithm transferability.

algorithm, network structure. For generating randomized
target policies, we train target policies with randomized 21
dynamics, 5 reward functions, 5 action space dimensions, 4
policy algorithms, and 4 network structures for each environ-
ment. Detailed setup for the randomization can be found in
supplementary materials.

6. Results and Analysis

We present the results in Figures 1, and 2, by showing
the final rewards of target agents under different attacks. In
Figure 1, we present the results for domain randomization
in different aspects. For each row, we present the results of
different attack methods under unknown settings where the
training environment conditions (dynamics, network struc-
ture, action space, or the reward) are randomized. The victim
policy is trained with a held-out environment condition, and
the attackers for our method are trained with randomized
conditions. The purpose is to show the transfer can happen
when the attacker does not have access to the exact victim
model, it can still perturb the victim policy non-trivially.
Different rows correspond to different environments, with
the first row showing the results for HalfCheetah and the
second row showing the results for Walker2d. Here “Non-
randomized Attack” refers to the case where the attacker
and target share the training environment and same algo-
rithm setting, and use the neural network based approach as
mentioned in [25] to attack; “Randomized Transfer Attack”
refers to our method which trains on multiple randomized

environments and transfers to other environments; “Non-
randomized Transfer Attack” refers to the case where the
attack and target have different environment settings, and the
difference lies in dynamics, network structure, action space
setting and reward function, respectively for the 1st, 2nd, 3rd
and 4th figure in each row, respectively. The “PGD” attack
corresponds to projected gradient descent based attack [13]
and “FGSM” corresponds to fast gradient sign method based
attack [4]. Both are white-box approaches. We present repre-
sentative results here for using NAF for training the attacker
and include other results in our supplementary materials.

We see clearly from the results that our method consis-
tently achieves better attack effects when changes are in
system dynamics, the network structure or the action space,
in both HalfCheetah and Walker2d. This shows the effective-
ness of the proposed transferable adversarial attack method.
We also notice that sometimes the transfer attack results
from our proposed method are even better than results from
white-box attacks. A potential reason is that domain random-
ization not only improves the transferability of the attack but
also might improve the robustness of the attack so that the
attack can stably reduce the final rewards achieved by the
target agents. We find the attack results are generally worse
when the reward space is unknown. This is reasonable as
different reward spaces representing different tasks introduce
more significant differences to the target policies compared
to varying other aspects such as system dynamics or action
spaces. We also notice that, given the challenges introduced
by randomizing reward spaces, our method still achieves
some level of success in the “Walker2d” environment.

In Figure 2, we present the attack results for the overall
attacks where the attack policies are trained with domain
randomization in all aspects. From the figure we can see
that our method achieves similar results as the white-box
methods. We present representative results here for using
NAF and DDPG for the target policies and include other
results in our supplementary materials.

7. Conclusion

In this paper, we demonstrated the ability for adversarial
attacks on deep RL to transfer across a variety of domain
changes. We show that domain randomization can be used to
improve this transferability. We also discovered that though
transferring attacks across dynamics, network structure and
action space shift can be easier, transferring attack across
reward function shift is relatively more difficult, indicating
that we can effectively protect the reward function informa-
tion in order to defend against such attacks. Further research
that investigates the defense techniques against these highly
cross-domain transferable attacks will likely be valuable.
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1. Introduction

We first present the algorithm for training attackers and
the training domain randomization settings. Then, we
present additional training results and training details in
this supplementary materials. The content includes the men-
tioned training results on transferable attacks trained with
DDPG, SAC, and PPO; we also include the training hyper-
parameters in the appendix.

2. Algorithm for Training Attackers

The detailed algorithm for training attackers in included
in Algorithm 1.

3. Domain Randomization Settings

Detailed setup for the alternative victim policy domain
randomization can be found in Table 1.

Table 1. Setups for training target policies with different aspects of
domain randomization in terms of dynamics, reward, action, policy
algorithm and network structure

Parameter Potential Values

Action Space 4, 5, 6, 7, 8 dimensional
Reward functions 5 functions for different tasks

Dynamics 21 normally-varied sets of masses
Policy Algorithm DDPG, NAF, SAC, PPO
Network Structure 2, 3, 4 layer neuron network

4. Additional Training Results

We present the mentioned training results in Figure 1, Fig-
ure 2, Figure 3 and Figure 4. We observe that the episodic
reward of victim policies under attack exhibits a relatively
large variation in different environment settings. For exam-
ple, using the white-box approach PGD to attack HalfChee-
tah of different dynamics, action space, network structure,
and reward space can have a large range of achieved episodic

Algorithm 1 Attacking Algorithm
Input:

V (s): alternative victim model’s value function
µ(s): alternative victim model’s actor
T : number of training steps
env: the training environment
✏: the perturbation bound

Initialize:

B: replay buffer
f(✓): attack network

for t = 1 to T do

s = env.reset()
a = µ(f(s))
s0, r, done = env.step(a)
B.append(s, a, s0, r, done)
sample = B.sample()
sample.s = f(sample.s)
loss = 0
sample.r = -1 * sample.r
loss = loss + Policy Training Loss(sample)
v = V (sample.s)
loss = loss + mean(v)
back-propagation with loss
s = s0

end for

reward. Therefore, we choose to report the reward percent-
age of episodic reward relative to the episodic reward under
PGD attack as the way to evaluate the attack effects of other
approaches. The way we calculate this percentage is to di-
vide the ground truth episodic reward by the absolute ground
truth episodic reward under PGD attack.

We see from Figure 1 that attacks generated with ran-
domized state transition dynamics, network structures and
action spaces all consistently performs better than or on par
with attacks that do not randomize. Attacks on randomized
reward space sometimes have worse performance compared
with non-randomized transfer attacks. This is because the

1



reward space based transfer attack is a little bit harder since
different reward designs could conflict with each other and
attacks generated for one reward design may not work so
well when it is applied on another reward design. In all
figures, the “Non-Randomized Attack” corresponds to the
attack that are trained and evaluated on the same victim
policy, “Non-randomized Transfer Attack” corresponds to
the attack that are trained on different alternative victim
policies but are then directly evaluated on the target vic-
tim policy, “Randomized Transfer Attack” corresponds to
the attack that are trained with domain randomization with
dynamics randomization, network structure randomization,
action space randomization and reward space randomization
respectively, and “PGD” and “FGSM” correspond to white-
box attacks PGD and FGSM which directly minimize each
frame’s value.

Figure 2 presents the results on transferring attacks be-
tween algorithms. That is, we train attackers using DDPG,
NAF, SAC, and use the each of the attacker to attack all
victim policies (DDPG, NAF, SAC). We also trained an
attacker that trains on all three alternative victim policies
(DDPG-NAF-SAC), and use this attacker to attack DDPG,
NAF and SAC. The results show the episode reward when
the target algorithm (victim policies) are under attack (attack
algorithm). It can be seen from the results that sometimes
the transferability of attacks among the algorithms is fairly
significant, even when the attacker is not trained with ran-
domization. This has been shown in previous work [1]. For
example, in the results of HalfCheetah with ✏ = 0.2, the at-
tacker trained with alternative victim policy SAC has a more
effective attack on DDPG than the attacker trained with al-
ternative victim policy DDPG. This may imply that SAC has
a much better performance in training the policy alone, and
thus has a better exploration during training. Therefore, this
might have given the attacker more insight about where the
agent may be weak. This results show that randomization on
the training algorithm may not necessarily always improve
the attack effects since the transferability of attacks among
different policies is already strong.

We present the overall randomization attack results in Fig-
ure 3. The label “Overall” means that the attacker is trained
with randomized dynamics, network structures, action space,
reward space and alternative victim policy algorithms. The
label “NAF” means that the attacker is trained on alternative
victim policy trained with NAF, with non-randomized dy-
namics, network structures, action space, reward space. The
label “DDPG” means that the attacker is trained on alterna-
tive victim policy trained with DDPG, with non-randomized
dynamics, network structures, action space, reward space.
The label “DDPG” means that the attacker is trained on alter-
native victim policy trained with SAC, with non-randomized
dynamics, network structures, action space, reward space.
In each subfigure, the attackers are evaluated on all victim

policies (of all dynamics, network structures, action space,
and reward space) trained with ’NAF’, ’DDPG’, ’SAC’, re-
spectively. The results show that training with everything
randomized may not always improve the attack performance.
The reason might be that: first, the transferability among dif-
ferent reward spaces is not very stable; second, the transfer-
ability among different policy algorithms is not very stable.
Given the instability of attack transferability among reward
space and policy algorithm, the overall randomization ef-
fects may be dampened. However, as we already observe
in the results on randomized dynamics, network structures
and action spaces, the transferability among these domains
are strong and stable, and randomization does help to im-
prove the attack effects. Therefore, these results provide
guidance and referenes for designing robust policies with
strong defense against such attacks.

Finally, we present some results on comparing the pro-
posed three attack algorithms (local minimization, global
minimization and the combined algorithm) in Figure 4. The
results show that combining the local minimization and
global minimization method does sometimes provide an
edge on achieving better attack effects.

5. Training Details

5.1. Network Structure

We use the original MuJoCo state space definition instead
of images to train the alternative victim policies. The input
to these networks will be a vector, and the dimension of the
vector depends on the observation space of each individual
task. We use fully connected layers for training these policies.
For all networks, we use FC(sin, sout) to represent one fully
connected layer, where sin indicates the input size, and sout
indicates the output size. When there are varying number
of layers we use {FC(sin, sout)}n to represent that there are
n layers of fully connected layers. We use a dash line to
connect these layers.

DDPG Network Structure For DDPG, we train an actor
and a critic network. The actor takes in the observation as
input and outputs the action choice. The network structure is
consisted of multiple fully connected layers with layer nor-
malization layer in-between and with a hidden dimension of
128. For the number of layers of n, state input size as s, and
action output size as a, the structure can be expressed as this:
FC(s, 128)-LayerNorm-ReLU-{FC(128, 128)-LayerNorm-
ReLU-}n�2-FC(128, a). Here LayerNorm stands for layer
normalization layer, and ReLU stands for the ReLU non-
linear activation layer. The same for following structures.
The critic structure can be expressed as this: {FC(s, 128)-
LayerNorm-ReLU-}n�1 for processing state and FC(128+a,
128)-LayerNorm-ReLU-{FC(128, 128)-LayerNorm-ReLU)-
}n�2-FC(128, 1) for processing the hidden state and action



concatenated vectors.

NAF Network Structure For NAF, we train the policy
and value function with a shared state perception network.
The network takes in the state and processes the state with n
layers of fully connected layers where n = 2, 3, 4. The state
processing network structure can be expressed as BN-FC(s,
128)-Tanh-{FC(128, 128)-Tanh-BN-}n�1. Then the value
function is a single layer fully connected network FC(128,
1). The actor takes in the processed state and processes
with a single fully connected layer FC(128, a). For more
detailed network structure please refer to the code base for
information.

SAC Network Structure For SAC, we train a Gaussian
stochastic policy function and a value function. The value
function takes in the state and action pair and process them
with n = 2, 3, 4 fully connected layers followed by a final
fully connected layer to output the one dimensional value.
We use a hidden dimension of 256 for all intermediate lay-
ers. We add ReLU [2] non-linear activation function after
each fully connected layer. We use a double value function
structure. For the policy network, we use a n = 2, 3, 4 layer
fully connected network with hidden dimension of 256 to
process the state and a final fully connected layer to get the
action output. For detailed information, please refer to the
code base.

PPO Network Structure For PPO, we train an actor net-
work and a critic network. The actor network is consisted
of n = 2, 3, 4 state processing fully connected layers with
each layer followed by a Tanh function. The hidden size for
intermediate layer is 64. Then the actor network is followed
by a final output fully connected layer. The critic network
is consisted of n = 2, 3, 4 state processing fully connected
layers with each layer followed by a Tanh function. The hid-
den size for intermediate layer is 64. Then the critic network
is followed by a final output fully connected layer to output
the value. For detailed information, please refer to the code
base.

Attack Network Structure For training the attacker, we
use a feed forward fully connected network with a struc-
ture as this: FC(s, 256)-LayerNorm-ReLU-FC(256, 256)-
LayerNorm-ReLU-FC(256, s)-Tanh. The output is timed
with the L�1 bound ✏ to bound the perturbation strength.

5.2. Training the Alternative Victim Policies

Please refer to the attached code base for information
about training the alternative victim policies. The code base
contains the following bash script folders: “scripts” that
contains the code for training policies; “attack scripts” that

contains the code for training the attackers; “evaluate scripts”
that contains the code for evaluating the attackers. The code
should be self-contained and it take a few days to finish train-
ing the alternative victim policies and the attack networks.
Evaluating the trained attacker takes a few hours to complete.
We evaluate the trained attackers for 100 episodes to get the
mean and standard deviation of the episodic reward after the
attack. We provide additional details on randomization on
reward and action spaces in each environment.

Randomization on Reward Space We include here the
randomization we designed on the reward space for both
environments. For the HalfCheetah environment, given the
previous state as s and the state after taking the action a as
s
0, the time of executing the action as t, the reward ID as
i = 0, 1, 2, 3, 4, the reward is defined as: first, if reward ID
is 0, the reward is defined as,

r0 = �0.1 ⇤ kak2 + (s00 � s0)/t, (1)

where s0 means the first dimension of the vector s; second,
if the reward ID is i =1,2,3 or 4, the reward is defined as,

r =
s
0
0 � s0

t
(3�0.5i)+(0.5i+0.1)�0.0005⇤kak2(i+0.5).

(2)
For the Walker-Walk environment, the reward for different
ID i = 0, 1, 2, 3, 4 corresponds to different moving speed.
The correspondence is as follows: {0 : 1.5, 1 : 0, 2 : 4, 3 :
8, 4 : 10}.

Randomization on Action Space We include here the de-
tails of randomization we designed on the action space for
both environments. Define the original action space as A,
and the example original action as a 2 Rd, where d is the
default dimension of the robot’s action space. Given the
action space ID i = 0, 1, 2, 3, 4, the new dimension of the
action space is {0 : d, 1 : d�2, 2 : d�1, 3 : d+2, 4 : d+3}.
For the case where the dimension of action space is smaller
than that of the default action space, the missing dimensions
will be filled with zero. For the case where the dimension of
action space is larger than that of the default action space,
the extra dimensions will be removed when executing the
actions.
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Figure 1. Domain randomization in Dynamic, network structure, action space and reward space. Shown are the results for attacking victim
policies trained with DDPG(top), SAC(middle), and PPO(bottom).



Figure 2. Domain randomization in target algorithms. Shown here are the attack results on HalfCheetah with eps of 0.2 (top left), Walker
with eps 0.2 (top right), HalfCheetah with eps of 0.4 (middle left), Walker with eps 0.4 (middle right), HalfCheetah with eps of 0.6 (bottom
left) and Walker with eps 0.6 (bottom right).



Figure 3. Domain randomization in all domains. Shown are the results for attacking victim policies trained with NAF (top), DDPG (middle)
and SAC (bottom).



Figure 4. Results on different attack algorithms. There is no randomization in this case, so the attacker is trained on the victim policy directly
to minimize the reward. Shown are the results for HalfCheetah (first row) and Walker (second row).


